May 22, 2001

Open Book

Problem-1: For the $\Delta \Sigma \mathrm{ADC}$ shown below:
a. Find the NTF and STF.
b. Show the zeros and poles of NTF in the z-plane and draw the frequency response of the NTF.
c. Do you expect the loop to be stable? Why or Why not?

Part (a)
$\mathrm{Y}=\mathrm{E}+\mathrm{H}^{*}\left[\mathrm{H}^{*}(\mathrm{X}-\mathrm{Y})-2 \mathrm{Y}\right]$
$\left\{\mathrm{H}^{2}+2 \mathrm{H}+1\right\} \mathrm{Y}=(\mathrm{H}+1)^{2} \mathrm{Y}=\mathrm{H}^{2} \mathrm{X}+\mathrm{E}$
$H=\frac{z^{-2}}{1-z^{-2}} ; \quad(H+1)^{2}=\frac{1}{\left(1-z^{-2}\right)^{2}}$
$\mathrm{Y}=z^{-4} \mathrm{X}+\left(1-z^{-2}\right)^{2} \mathrm{E}$
So; \quad STF $=z^{-4}$ and NTF $=\left(1-z^{-2}\right)^{2}$
Part (b)
Poles(4) at $\mathrm{z}=0$; zeros (2) at $\mathrm{z}=1$ and $\mathrm{z}=-1$

Pole zero plot and Frequency Response
Part(c)
Yes, Since it can be obtained by mapping z with z^{2}. Which form a stable $2^{\text {nd }}$-order loop.

Problem-2: The STF of a $\Delta \Sigma$ ADC is z^{-2}; its NTF is

$$
H_{N}(z)=\frac{\left(1-z^{-1}\right)^{2}}{1-0.1 z^{-1}}
$$

It uses a 2-bit internal quantizer, with the characteristics shown below, and $\mathrm{V}_{\text {ref }}=1 \mathrm{~V}$. Assuming a dc input, what is the input voltage range which guarantees even in the worst case that the quantizer is not overloaded?

Solution:

Suppose the signal appearing at the input port of the 2-bit quantizer is $v_{c}(n)$, Then

$$
\begin{aligned}
V_{c} & =Y(\mathrm{z})-E(\mathrm{z}) \\
& =\mathrm{X} \mathrm{STF}+\mathrm{E}[\mathrm{NTF}-1]
\end{aligned}
$$

So

$$
\begin{gathered}
V_{c}(z)\left(1-0.1 z^{-1}\right)=X(\mathrm{z}) z^{-2}\left(1-0.1 z^{-1}\right)+E(z)\left[\left(1-z^{-1}\right)^{2}-\left(1-0.1 z^{-1}\right)\right] \\
=X(\mathrm{z}) z^{-2}\left(1-0.1 z^{-1}\right)+E(z)\left(z^{-2}-1.9 z^{-1}\right)
\end{gathered}
$$

Finally we get,

$$
V_{c}(z)\left(1-0.1 z^{-1}\right)=X(\mathrm{z}) z^{-2}\left(1-0.1 z^{-1}\right)+E(z)\left(z^{-2}-1.9 z^{-1}\right)+V_{c}(z) 0.1 z^{-1}
$$

in time domain

$$
\begin{aligned}
v_{c}(n) & =0.9 x+e(n-2)-1.9 e(n-1)+0.1 v_{c}(n-1) \\
& =0.9 x+e(n-2)-2 e(n-1)+0.1 y(n-1)
\end{aligned}
$$

to ensure the quantizer is not overloaded,

$$
\begin{gathered}
-\frac{V_{L S B}}{2} \leq v_{c}(n) \leq V_{r e f}-\frac{V_{L S B}}{2} \\
-0.125 \leq v_{c}(n) \leq 0.875
\end{gathered}
$$

and keep in mind that

$$
\begin{aligned}
-\frac{V_{L S B}}{2} & \leq e(n) \leq \frac{V_{L S B}}{2} \\
-0.125 & \leq e(n) \leq 0.125
\end{aligned}
$$

that means in the worst case
$0.9 x \leq\left. v_{c}(n)\right|_{\max }-\left.e(n-2)\right|_{\max }+\left.1.9 e(n-1)\right|_{\min }-\left.0.1 v_{c}(n-1)\right|_{\max }$
$=0.875-0.125+1.9 \times(-0.125)-0.1 \times 0.875$
$=0.425$
and
$0.9 x \leq\left. v_{c}(n)\right|_{\max }-\left.e(n-2)\right|_{\max }+\left.1.9 e(n-1)\right|_{\min }-\left.0.1 v_{c}(n-1)\right|_{\max }$ $=0.125-(-0.125)+1.9 \mathrm{x}(-0.125)-0.1 \times(-0.125)$
$=0.25$

Eventually we get

$$
0.2778 \leq x \leq 0.4722
$$

